MedTech

How NIRS is used in brain-computer interfaces

How NIRS is used in brain-computer interfaces

Imagine a person wearing a Brite and playing a demanding video game. This video game is difficult, and the mental workload is increasing drastically. Changes in blood volume, or hemodynamic changes, which are associated with the increase in workload is registered using the Brite. This blog will expand on how a NIRS-based BCI works and what researchers have made possible using NIRS-based BCI.

User insight: Observing NIRS research with the Artinis PortaLite on elderly

User insight: Observing NIRS research with the Artinis PortaLite on elderly

We like to incorporate the user from the very first beginning in our development process. Talking with researchers and clinicians, we get to know what’s driving them and what their expectations and suggestions are for our devices. We are constantly trying to understand their feelings and see the world from their perspective to optimize our NIRS devices. One way of doing this is observing and questioning the user that is working with the device, and subject that is wearing the NIRS device. This way, we are trying to gain new insights for existing and future NIRS products.

A research lab on wheels: unveiling the Sophia Bus

A research lab on wheels: unveiling the Sophia Bus

The Sophia Bus was an idea pitched by researchers from the Department of Child and Adolescent Psychiatry and Psychology within Erasmus MC-Sophia Children’s Hospital. As a national expertise center for many rare neurodevelopmental syndromes, children all over the Netherlands need to travel all the way to Rotterdam frequently to participate in research studies. The Sophia bus minimizes the burden for these patients by offering the solution to this problem: a mobile research lab that carries researchers to the patients’ doorstep.